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Abstract
A thorough analysis of the tunnelling of electrons through a laterally
inhomogeneous rectangular barrier is presented. The barrier height is defined
as a statistically homogeneous Gaussian random function. In order to simplify
calculations, we assume that the electron energy is low enough in comparison
with the mean value of the barrier height. The randomness of the barrier
height is defined vertically by a constant variance and horizontally by a finite
correlation length. We present detailed calculations of the angular probability
density for the tunnelled electrons (i.e. for the scattering forwards). The
tunnelling manifests a remarkably diffusive character if the wavelength of
the electrons is comparable with the correlation length of the barrier.

PACS numbers: 03.65.−w, 03.65.Nk, 68.49.−h, 73.40.Gk, 73.40.Rw

1. Introduction

As is well known, there exists various quantum-mechanical models of disordered solids. (cf
e.g. the well-known monograph [1] where some archetypal approaches to models of disorder
were summarized.) One of the fundamental topics with which the theory of disordered solids
had ever to cope with was the clarification of the behaviour of electrons in a static field defined
by a random potential energy V (r). In the present paper, we intend to show that even the
tunnelling problem can be treated with a random potential energy. We define the potential
energy in the form

V (r) = [�(z) − �(z − a)]V0(�ρ). (1)

Here �ρ = (x, y), a > 0 is a small constant and �(z) is the unit step function: �(z) = 0 if
z < 0 and �(z) = 1 if z > 0. Thus, we assume that the randomness of the potential energy
is confined to a thin layer of thickness a. We stipulate that the random function V0(�ρ) is
stochastically homogeneous. We assume that the mean value of V0(�ρ),

〈V0(�ρ)〉 = V̄ 0 = const > 0, (2)
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is sufficiently high. (By the angular brackets 〈 〉, we denote the averaging with respect to the
randomness of V0(�ρ).) Outside the layer, the potential energy is equal to zero and so we can
consider a particle (say an electron) travelling towards the layer 0 < z < a as a plane wave
with a given wave vector k0. The Schrödinger equation

− h̄2

2m
∇2ψ(r) + [�(z) − �(z − a)]V0(�ρ)ψ(r) = Eψ(r) (3)

is a stochastic differential equation. Evidently, we may consider the tunnelling as a special
problem of the scattering theory. The basic problem is to derive the probability density for the
scattering of the electron from the state |k0〉 to an arbitrary state |k〉. Since this scattering is
elastic, we have to respect that |k0| = |k| = k, i.e.

h̄2k2
0

2m
= h̄2k2

2m
= E. (4)

With a given value of the energy E, we prefer to define the wave vectors k0 and k by
their directional angles (φ0, θ0) and (φ, θ): kx = k sin θ cos φ, kz = k cos θ , etc. We take
k0z > 0, i.e. θ0 ∈ (0, π/2). We will focus attention on the scattering forwards, i.e. we take
kz > 0, θ ∈ (0, π/2).

The main objective of the theory presented in this paper is the calculation of the angular
probability density P(φ, θ |φ0, θ0) for the scattering k0 → k. In order to exemplify the
calculation with a simple, but still relevant, random barrier V (r), we choose V0(�ρ) as a
Gaussian random function with a constant variance

µ2 = 〈[V0(�ρ) − V̄ 0]2〉 (5)

and with the autocorrelation function in the standard form

W0(�ρ1; �ρ2) = 〈[V0(�ρ1) − V̄ 0][V0(�ρ2) − V̄ 0]〉
µ2

= exp

(
− (�ρ1 − �ρ2)

2

2�2

)
. (6)

We call the parameter � > 0 the correlation length of the random barrier V (r). The proper
objective of the present paper is to derive the dependence of the tunnelling probability on the
energy E and on the three barrier parameters, V̄ 0 > 0, µ � 0 and � > 0.

We focus attention on energy values that are sufficiently low. We stipulate that

µ +
h̄2

2ma2
< V̄ 0 and E < Eu, (7)

where

Eu = 1

4

(
V̄ 0 − µ − h̄2

2ma2

)
. (8)

Eu is meant approximately as the ‘upper bound’ of the energies that we consider as ‘low’. In
a typical realization of the Gaussian random function V0(�ρ), there may exist points �ρ where
V0(�ρ) is negative and then V (r) is not a barrier but a well at these points. To minimize the
occurrence of wells in V (r), we require the variance µ2 not to be too high, but otherwise we
prefer to consider the values of µ as high as possible. As a compromise, we assume that

0 < µ < min

{
V̄ 0 − h̄2

2ma2
,
V̄ 0

4

}
. (9)

Under this condition, the absolute values of the function

v0(�ρ) = V0(�ρ) − V̄ 0 (10)

2
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at most points �ρ are small in comparison with V̄ 0. Owing to this fact, we can simplify some
expressions in our calculations. In particular, we may use the approximation√

V0(�ρ) − E ≈
√

V̄ 0 − E − v0(�ρ)

2
√

V̄ 0 − E
. (11)

If µ = 0, the barrier is homogeneous. This case is deterministic. The theory of the tunnelling
in this case is well-known (cf e.g. [2]). If � → ∞ and µ > 0, the problem is not deterministic,
but we can interpret 〈 〉 as the averaging over a statistical ensemble of homogeneous barriers.
Our intent, however, is to solve the tunnelling problem in the general case when µ > 0 and
when the correlation length � > 0 is finite.

We address the present paper mainly to theorists, since the problem under consideration
is interesting from a quantum-mechanical viewpoint in its own right. On the other hand,
evidently the problem is also of interest in view of some microelectronic applications.

2. 1D case: tunnelling through a rectangular barrier

If µ = 0 but also if µ > 0 and � → ∞, the wavefunctions are factorized as ψ(r) =
exp[i(kxx + kyy)]ψ1D(z) so that we may confine ourselves to discussing the 1D case.

2.1. Single barrier

The tunnelling concerns energies E < V0. If a particle of mass m > 0 impacts upon the
barrier from the left, we write

k = kz =
√

2mE

h̄
, κ =

√
2m(V0 − E)

h̄
. (12)

We obtain easily the reflection coefficient

R(V0) = |A|2 = (κ2 + k2)2 sinh2(κa)

(κ2 + k2)2 sinh2(κa) + 4κ2k2
(13)

and the transmission coefficient

T (V0) = |A|2 = 4κ2k2

(κ2 + k2)2 sinh2(κa) + 4κ2k2
. (14)

Clearly, R(V0)+T (V0) = 1. If κa 
 1, i.e. if V0−E 
 h̄2/(2ma2), the tunnelling probability
can be approximated as

T (V0) ≈ 16

(
1 − E

V0

)
E

V0
exp

(
−2a

√
2m(V0 − E)

h̄

)
. (15)

2.2. Gaussian ensemble of barriers with random height

Let us now assume that V0 is a Gaussian random variable. We consider a Gaussian ensemble
of barriers. The probability to find a barrier with the height in the interval (V0, V0 + dV0) in
this ensemble is equal to PG(V0) dV0 where

PG(V0) = 1√
2πµ2

exp

(
− (V0 − V̄ 0)

2

2µ2

)
= 1√

2πµ2
exp

(
− v2

0

2µ2

)
. (16)

(cf equation (10).) The function 1/V0 in the factor in front of the exponential in formula (15)
can be written as 1/V0 ≈ 1/V̄ 0(1 − v0/V̄ 0). Hence(

1 − E

V0

)
1

V0
≈

(
1 − E

V̄ 0

)
1

V̄ 0
−

(
1 − 2E

V̄ 0

)
v0

V̄
2
0

+ · · · (17)

3
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We accept the approximation

exp

(
−2a

√
2m(V0 − E)

h̄

)
≈ exp

(
−2a

√
2m(V̄ 0 − E)

h̄

)
exp

(
−a

h̄

√
2m

V̄ 0 − E
v0

)
. (18)

The proper objective of this subsection is the calculation of the mean value

〈T 〉 =
∫ ∞

−∞
dV0T (V0)PG(V0). (19)

In regard to formula (17), we write

〈T 〉 ≈ 〈T0〉 + 〈T1〉. (20)

The first (second) term in this formula corresponds to the first (second) term on the rhs of
expression (17). We will now derive the condition under which the term 〈T1〉 is much smaller
than the term 〈T0〉

〈T0〉 = T̄ exp

(
ma2µ2

h̄2(V̄ 0 − E)

)
. (21)

Here

T̄ = T (V̄ 0) ≈ 16

(
1 − E

V̄ 0

)
E

V̄ 0
exp

(
−2a

√
2m(V̄ 0 − E)

h̄

)
. (22)

Since we are discussing the case when h̄2/(2ma2) � V̄ 0, we choose the upper bound of the
values of µ for which the approximations used in the present paper may apply as µu = V̄ 0/4
(cf inequality (9)) and the value of Eu, defined by expression (8), as (V̄ 0 − µu)/4 = 3V̄ 0/16.
When inserting µu for µ and Eu for E in the exponent of the exponential of expression (21),
we obtain the value

mµ2
ua

2

h̄2(V̄ 0 − Eu)
= 2

13

(
2ma2

h̄2

)
V̄ 0. (23)

This value can be relatively high and so the exponential factor in formula (21) can become
considerably—even by the order of magnitude—greater than unity.

We can calculate the term

〈T1〉 = −T̄
1

V̄ 0

[(
1 − 2E

V̄ 0

)/(
1 − E

V̄ 0

)] ∫ ∞

−∞
dv0 v0 exp

(
a

h̄

√
2m

V̄ 0 − E
v0

)
PG(V0)

without resorting to numerical computations:

〈T1〉 = −
√

2ma2

h̄2

(V̄ 0 − 2E)µ2

V̄ 0(V̄ 0 − E)3/2
〈T0〉. (24)

Therefore, we may state that |〈T1〉| � 〈T0〉 if

(V̄ 0 − 2E)2µ4

V̄ 0(V̄ 0 − E)3
� h̄2

2ma2
. (25)

The lhs of this inequality can be much smaller than V̄ 0 even with relatively high values
of µ. Indeed, the substitution of µu and Eu for µ and E, respectively, gives us the value
(V̄ 0 − 2Eu)

2µ4
u

/
[V̄ 0(V̄ 0 − Eu)

3] ≈ 0.003V̄ 0. Thus we may conclude that

〈T 〉 ≈ 〈T0〉 if
h̄2

2ma2
> 0.01V̄ 0. (26)

4
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For h̄2/(2ma2) = 0.01V̄ 0, µ = V̄ 0/4 and E = 3V̄ 0/16, we find that

exp

(
ma2µ2

h̄2(V̄ 0 − E)

)
= exp(50/13) ≈ 47,

so that we may state that, according to formula (21), the mean value 〈T 〉 may be as much as fifty
times higher than the tunnelling probability T̄ calculated for the corresponding deterministic
barrier with V0 ≡ V̄ 0.

The enhancement of the tunnelling probability as a consequence of the Gaussian
randomness of V0 is comprehensible. If the correlation length � is large, there are wide
areas on the barrier plane z = 0 where V0 is almost constant. However, the value of V0 varies
from area to area. The electron prefers to tunnel through areas where V0 is lower than V̄ 0.

3. 3D case: tunnelling through a narrow inhomogeneous rectangular barrier
(mathematical formulation of the problem)

In this section, we will follow the general method that we recently applied when examining
the problem of the tunnelling through an inhomogeneous delta-barrier [3, 4]. In the present
paper, we want to show how this method works in the case of the tunnelling through an
inhomogeneous rectangular barrier of a non-zero thickness a. We assume that the value of
a > 0 is small in comparison with �, and that |∂ ln V0(�ρ)/∂x|� � 1, |∂ ln V0(�ρ)/∂y|� � 1.

3.1. General solution of the Schrödinger equation with an arbitrary function V0(�ρ)

Let us now consider the de Broglie wave exp(ik0 · r) impacting upon the plane z = 0 with
k0z > 0. This wave is scattered on the barrier both backwards and forwards. We will use the
denotation

ψ(r) =
{

exp(ik0 · r) + F1(r) if z < 0,

F2(r) if z > a.
(27)

Let us imagine a straight line intersecting perpendicularly the plane z = 0 in a point r1 = (�ρ, 0)

and correspondingly the plane z = a in the point r2 = (�ρ, a). In the close vicinity of these
two points, we may take V0(�ρ) as a constant. Thus we write

F1(r) ≈ A(�ρ) exp[i(k0xx + k0yy)] exp(−ik0zz)], z < 0,

F2(r) ≈ C(�ρ) exp[i(k0xx + k0yy)] exp(ik0zz), z > a.
(28)

Using the continuity of ψ(r) and of ∂ψ(r)/∂z, we obtain the coefficients

A(�ρ) = −
[
κz(�ρ)2 + k2

0z

]{exp[κz(�ρ)a] − exp[−κz(�ρ)a]}
[κz(�ρ) − ik0z]2 exp[κz(�ρ)a] − [κz(�ρ) + ik0z]2 exp[−κz(�ρ)a]

, (29)

C(�ρ) = − 4iκz(�ρ)k0z exp(−ik0za)

[κz(�ρ) − ik0z]2 exp[κz(�ρ)a] − [κz(�ρ) + ik0z]2 exp[−κz(�ρ)a]
, (30)

with

κz(�ρ) =
√

2mV0(�ρ)/h̄2 − k2
0z. (31)

Respecting expressions (28), we obtain the locally given functions

∂F1(r)
∂z

∣∣∣∣
z=−0

= −ik0zA(�ρ),
∂F2(r)

∂z

∣∣∣∣
z=a+0

= ik0zC(�ρ). (32)

5
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If the function V0(�ρ) is random, this implies that the function κz(�ρ) is random and,
consequently, also the functions A(�ρ) and C(�ρ) are random.

Equation (3) can be solved by Kirchhoff’s method. We have to employ Green’s function
of the problem. We define separately Green’s function for z < 0 and for z > a:

G1(r|r0) = G0(�ρ, z|�ρ0, z0) + G0(�ρ, z|�ρ0,−z0) for z < 0,

G2(r|r0) = G0(�ρ, z − a|�ρ0, z0 − a) + G0(�ρ, z − a|�ρ0,−z0 + a) for z > a.
(33)

Here

G0(r|r0) = exp(ik|r − r0|)
4π |r − r0| , k = k0 =

√
2mE

h̄
. (34)

We have chosen the symmetrized form of the functions G1(r|r0) and G2(r|r0) in order to
utilize the zero value of their normal derivatives:

∂G1(r|r0)

∂z

∣∣∣∣
z=−0

= 0,
∂G2(r|r0)

∂z

∣∣∣∣
z=a+0

= 0. (35)

Owing to the first of these equalities, we can express quite generally the function F1(r) by the
formula

F1(r) =
∫

d2ρ ′G1(�ρ ′, 0|r)∂F1(r′)
∂z′

∣∣∣∣
z′=−0

= 1

2π

∫
d2ρ ′ exp(ik

√
(�ρ ′ − �ρ)2 + z2)√

(�ρ ′ − �ρ)2 + z2

∂F1(r′)
∂z′

∣∣∣∣
z′=−0

, z < 0. (36a)

Similarly we may write

F2(r) = −
∫

d2ρ ′G2(�ρ ′, a|r)∂F2(r′)
∂z′

∣∣∣∣
z′=a+0

= − 1

2π

∫
d2ρ ′ exp(ik

√
(�ρ ′ − �ρ)2 + (z − a)2)√

(�ρ ′ − �ρ)2 + (z − a)2

∂F2(r′)
∂z′

∣∣∣∣
z′=a+0

, z > 0. (36b)

3.2. Deterministic function V0(�ρ): approximation for energies h̄2k2
0z

/
(2m) that are much

lower than the minimum of V0(�ρ)

Let V0(�ρ) be an arbitrary positive function and let V min
0 > 0 be its minimum value. Respecting

formula (31), we define the parameter κmin
z =

√
2mV min

0

/
h̄2 − k2

0z. We stipulate the fulfilment
of the condition κmin

z a 
 1, i.e.

V min
0 
 h̄2

2m

(
1

a2
+ k2

0z

)
. (37)

Under this condition, expressions (29) and (30) become much simpler:

A(�ρ) ≈ κz(�ρ)2 + k2
0z

[κz(�ρ) − ik0z]2
, C(�ρ) ≈ − 4iκz(�ρ)k0z

[κz(�ρ) − ik0z]2
exp{−[κz(�ρ) + ik0z]a}. (38)

3.3. Low-energy approximation with the Gaussian random function V0(�ρ)

If V0(�ρ) is defined as a Gaussian random function, condition (37) cannot be applied. Instead,
we require the fulfilment of the conditions

0 < µ < µu, 0 < k0z < ku, (39)

6
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where µu = V̄ 0/4 and where ku is defined by the equation Eu = h̄2k2
u

/
(2m) = (V̄ 0 −µu)/4 =

3V̄ 0/16. (Here we have taken into account, with a minor modification respecting the 3D case,
what we have discussed in subsection 2.2 in the 1D case.) Employing the function v0(x, y)

(cf expression (10)), we can write

κz(�ρ) = κ̄z

√
1 +

2m

h̄2κ̄2
z

v0(�ρ), κ̄z =
√

2mV̄ 0

h̄2 − k2
0z. (40)

Since µ is small in comparison with Eu and V̄ 0 − Eu, we may use the development

κz(�ρ) = κ̄z

[
1 +

m

h̄2κ̄2
z

v0(�ρ) − 1

2

(
m

h̄2κ̄2
z

)2

[v0(�ρ)]2 + · · ·
]
. (41)

Then also

A(�ρ) = Ā + A1v0(�ρ) + A2[v0(�ρ)]2 + · · · (42)

(Ā is the value of A(�ρ) if V0(�ρ) is substituted by V̄ 0.) Similarly we can write

− 4iκz(�ρ)k0z

[κz(�ρ) − ik0z]2
≈ − 4iκ̄zk0z

[κ̄z − ik0z]2
+ C1v0(�ρ) + C2[v0(�ρ)]2 + · · · (43)

By analogy with expression (18), we accept the exponential with the exponent in the linear
approximation with respect to v0(�ρ):

exp{−[κz(�ρ) + ik0z]a} ≈ exp[−(κ̄z + ik0z)a] exp

(
− ma

h̄2κ̄z

v0(�ρ)

)
. (44)

When utilizing formulae (32), (36a) and (36b), we can readily calculate averaged functions
like 〈|Fα(r)|2〉 or 〈Fα(r)∇F ∗

α (r)〉, α = 1, 2. The value of Ā determines the probability of
the regular reflection from the barrier and the coefficients A1, A2, . . . determine the diffusive
character of the backscattering. However, the backscattering is not the proper topic of the
present paper. We note only that when the parameter µ is small, the influence of the barrier
randomness on the reflection of low-energy electrons is weak.

We focus attention on the forward scattering. Assuming that the value of h̄2/(2ma2)

may be greater than 0.01V̄ 0, say, we may neglect the terms with C1, C2, . . . in series (43).
Employing formula (42.2) in this approximation, we express the function F2(r) as

F2(r) ≈ − 2κ̄zk
2
0z

π [κ̄z − ik0z]2
exp[−(κ̄z + ik0z)a]I (�ρ), (45)

where

I (�ρ) =
∫

d2ρ ′ exp[i(k0xx
′ + k0yy

′)]
exp(ik

√
(�ρ ′ − �ρ)2 + (z − a)2)√

(�ρ ′ − �ρ)2 + (z − a)2
exp

(
−mav0(�ρ ′)

h̄2κ̄z

)
.

Since our intention is to treat the tunnelling as a specific problem of the scattering theory, we
prefer to pay heed on the asymptotic behaviour of the function F2(r), i.e. for

kz 
 1, z 
 a. (46)

Under these conditions, we may use the approximation

exp[ik
√

(�ρ ′ − �ρ)2 + z2]√
(x ′ − x)2 + (y ′ − y)2 + z2

≈ exp(ikR)

R
exp

(
−ik

xx ′ + yy ′

R

)
, R = |r|. (47)

Then I (�ρ) turns into the Fourier integral:

I (�ρ) ≈ exp(ikR)

R

∫
d2ρ ′ exp

{
i

[(
k0x − kx

R

)
x ′ +

(
k0y − ky

R

)
y ′

]}
exp

(
−mav0(�ρ ′)

h̄2κ̄z

)
.

(48)

7
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4. Angular distribution of the tunnelling into a given direction

Let us realize a square diaphragm attached to the plane z = 0 so that the tunnelling may
be allowed through the opening � defined by the inequalities −L/2 < x < L/2 and
−L/2 < y < L/2. If z = R cos � → ∞, we may state that |x| 
 L/2 and |y| 
 L/2 for
almost all values of � ∈ (0, π/2) (except for values of � approaching zero). Moreover, we
require that L may be large enough in comparison with the correlation length � of the random
function v0(x, y):

0 < � � L � z. (49)

Since an observer standing at any distant point r sees the square L × L ≡ � as an almost
point-like object, we may state that the function 〈|F2(r)|2〉, if considered on a hemisphere
|r| = R = const, maps the angular distribution of the tunnelling probability. Therefore, we
will calculate the integral

|I�(�ρ)|2 = (1/R2)

∫
�

d2ρ ′
∫

�
d2ρ ′′

× exp

{
i

[(
k0x − kx

R

)
(x ′ − x ′′) +

(
k0y − ky

R

)
(y ′ − y ′′)

]}
F{v0( �̃ρ)}, (50)

with the functional

F{v0( �̃ρ)} = exp

(
−ma[v0(�ρ ′) + v0(�ρ ′′)]

h̄2κ̄z

)
. (51)

Integral (50) is proportional to L2, so we define the function

ϕ(�ρ|k0) = lim
L→∞

|I�(�ρ)|2/L2. (52)

Functional (51) can be written in the form F{v0( �̃ρ)} = exp
[−∫

d2ρ̃ β( �̃ρ)v0( �̃ρ)
]

with
β( �̃ρ) = [ma/(h̄2κ̄z)][δ( �̃ρ − �ρ ′) + δ( �̃ρ − �ρ ′′)]. The Gaussian random function v0(�ρ) is zero-
centered. With an arbitrary function β( �̃ρ), we may use the general formula〈

exp

[
−

∫
d2ρ̃ β( �̃ρ)v0( �̃ρ)

]〉
= exp

(
µ2

2

∫∫
d2ρ̃ ′ d2ρ̃ ′′β( �̃ρ ′

)W0( �̃ρ ′; �̃ρ ′′
)β( �̃ρ ′′

)

)
, (53)

where W0 is the autocorrelation function of v0(�ρ). (cf definition (6).) (At another occasion,
we used already formula (53) with β = const in our early paper [5].) Employing formula
(53), we can readily derive the function

〈F{v0(x̃, ỹ)}〉 = exp{u2[1 + W0(x
′, y ′; x ′′, y ′′)]}, (54)

where

u = maµ

h̄2κ̄z

. (55)

In the 1D case (i.e. when k0x = k0y = 0), the value of u2 would be equal to ma2µ2/

[h̄2(V̄ 0 − E)]. This value can be (as we have shown in subsection 2.2) comparable with unity
even if the value of µ is small.

It is convenient to use the variables ξ = x ′ − x ′′, η = y ′ − y ′′ and X = 1
2 (x ′ + x ′′), Y =

1
2 (y ′ + y ′′). Then we easily find that

ϕ(�ρ|k0) = exp(u2)

R2
χ(�ρ|k0), (56)

where

χ(�ρ|k0) =
∫ ∞

−∞
dξ

∫ ∞

−∞
dη exp

{
i

[(
k0x − kx

R

)
ξ +

(
k0y − ky

R

)
η

]}
exp[u2W0(

√
ξ 2 + η2)].

8
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Here we have preferred to write W0(
√

ξ 2 + η2) instead of W0(x
′, y ′; x ′′, y ′′). Using the series

exp

[
u2 exp

(
−ξ 2 + η2

2�2

)]
=

∞∑
n=0

u2n

n!
exp

(
−n

ξ 2 + η2

2�2

)
,

we may consider the sum

χ(�ρ|k0) = χ0(�ρ|k0) +
∞∑

n=1

χn(�ρ|k0), (57)

so that

1

(2π)2
χ0(�ρ|k0) = δ

(
k0x − kx

R

)
δ

(
k0y − ky

R

)
and

1

(2π)2
χn(�ρ|k0) = u2n

n!

�2

2πn
exp

[
− �2

2n

[(
k0x − kx

R

)2

+

(
k0y − ky

R

)2]]
, n � 1.

Evidently,

χ∞(�ρ|k0) = exp(u2)χ0(�ρ|k0). (58)

The superscripts 0 and ∞ mean (and in other functions will also mean) that the correlation
length � is taken either as zero or as infinity. If � is finite, this implies a certain diffusive
character of the tunnelling. Since the functions χ0(�ρ|k0) and χn(�ρ|k0) concern an arbitrary
point r located far away from the barrier, we can imagine a ray emitted from the center of
the square L × L to r and characterize this ray by the wave vector k = kr/R. (Recall that
R = |r|.) Using the directional angles φ, θ and φ0, θ0 of the vectors k and k0, respectively,
we identify the product δ(kx − k0x)δ(ky − k0y)δ(kz − k0z) with

δ(k − k0) = 1

k2 sin θ
δ(k − k0)δ(φ − φ0)δ(θ − θ0).

The factor δ(k − k0) is due to the conservation of energy. (We have abandoned this factor in
our definition of the functions χn(�ρ|k0), keeping the values of |k| a priori constant.)

To derive the angular distribution of the tunnelling probability, we define the scattering
matrix

S(φ, θ |φ0, θ0) =
(

k

2π

)2

Q̃(k, θ0) exp(u2)χ(x, y|k0). (59)

In agreement with (57), we write the series

S(φ, θ |φ0, θ0) = S0(φ, θ |φ0, θ0) +
∞∑

n=1

Sn(φ, θ |φ0, θ0) (60)

with the terms

S0(φ, θ |φ0, θ0) = Q̃(k, θ0)

sin θ
exp(u2)δ(φ − φ0)δ(θ − θ0) (61)

and

Sn(φ, θ |φ0, θ0) = Q̃(k, θ0) exp(u2)
u2n

n!

k2�2

2πn

× exp

[
−k2�2

2n
(sin2 θ0 − 2 sin θ0 sin θ cos(φ − φ0) + sin2 θ)

]
, n � 1. (62)

9
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The factor Q̃(k, θ0) depends, in addition to k and θ0, on the parameters defining the barrier. The
Gaussian random barrier treated in the present paper has been defined with four parameters:
the thickness a, the mean height V̄ 0, the variance µ2 and the correlation length �. In fact, the
parameters a, V̄ 0 and µ form together the parameter u (cf expression (55)). The parameter µ,
and then also u, characterizes the ‘vertical uncertainty’ of the barrier height V0(�ρ). (Recall
that µ is the r.m.s. of V0(�ρ).) Expression (62) involves also another dimensionless parameter,
namely

w = k�. (63)

This parameter characterizes the ‘horizontal randomness’ of V0(�ρ): if 1/k is chosen as the
unit length, w may be interpreted as a characteristic width of the random undulation of
the function V0(�ρ). If the value of w is low (high), the random undulation of V0(�ρ) around
the mean value V̄ 0 is rapid (slow) in any direction parallel with the plane of the barrier. The
factor Q̃(k, θ0), being a function of the parameter u, does not vary with the parameter w. This
is because the dependence on � is entirely absorbed in the function χ(�ρ|k0). That is why

Q̃(k, θ0) exp(u2) ≡ Q(u, k0) exp(u2) =
∫ 2π

0
dφ

∫ π/2

0
dθ sin θS0(φ, θ |φ0, θ0). (64)

As the probability of the tunnelling through a planar barrier is always related to the normal
component of the velocity of the impacting particles, we multiply expression (64) by cos θ0

and obtain the equality cos θ0Q(u, k0) exp(u2) = T (u, k0) = T̄ (k, θ0) exp(u2). Thus,
cos θ0Q(u, k0) = T̄ (u, k0) and

T ∞(u, k0) = T 0(u, k0) exp(u2) = T̄ (u, k0) exp(2u2) = T̄ (k, θ0) exp(u2). (65)

The symbol T̄ (k, θ0) signifies the 3D analogue to expression (22):

T̄ (k, θ0) ≈ 16
κ̄2

z k2
0z(

κ̄2
z + k2

0z

)2 exp(−2aκ̄z)

= 16
h̄2k2 cos2 θ0

2mV̄ 0

(
1 − h̄2k2 cos2 θ0

2mV̄ 0

)
exp

(
−2a

√
2mV̄ 0

h̄2 − k2 cos2 θ0

)
. (66)

The value of T̄ (k, θ0) would mean the tunnelling probability if the barrier of thickness a were
homogeneous with the height equal to V̄ 0. Note that the parameter u itself depends on the
angle of incidence θ0:

u2 =
(

maµ

h̄2

)2/(
2mV̄ 0

h̄2 − k2 cos2 θ0

)
.

5. Diffusivity of the tunnelling

5.1. Dependence of the tunnelling probability upon the correlation length �

of the random barrier height

We introduce the functions

σ 0(θ |θ0) =
∫ π

−π

dφ S0(φ, θ |φ0, θ0), σn(θ |θ0) =
∫ π

−π

dφ Sn(φ, θ |φ0, θ0).

Then

T 0(u, k0) = cos θ0

∫ π/2

0
dθ sin θσ 0(θ |θ0),

Tn(u,w, k0) = cos θ0

∫ π/2

0
dθ sin θσn(θ |θ0), n � 0.

10
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We can calculate the functions σn(θ |θ0) (which depend on u and w) explicitly, utilizing the
formula ∫ π

−π

dφ exp(b cos φ) = 2πI0(b) = 2πJ0(ib),

where J0(ζ ) means Bessel’s function of index zero. Thus, for n � 1,

σn(θ |θ0) = T 0(u, k0)
w2u2n

nn!
exp

(
−w2

2n
sin2 θ0

)
exp

(
−w2

2n
sin2 θ

)
I0

(
w2 sin θ0

n
sin θ

)
.

(67)

(cf expressions (55) and (63).) After defining the dimensionless function

B(q, θ0) = 2q cos θ0 exp(−q sin2 θ0)

∫ π/2

0
dθ sin θ exp(−q sin2 θ)I0(2q sin θ0 sin θ), (68)

we find that
∞∑

n=1

Tn(u,w, k0) = T 0(u, k0)

∞∑
n=1

u2n

n!
B

(
w2

2n
, θ0

)
. (69)

In the special case of the perpendicular incidence (i.e. if θ0 = 0),

B(q, 0) ≡ B⊥(q) = 2q

∫ π/2

0
dθ sin θ exp(−q sin2 θ)

= 2
√

q exp(−q)

∫ √
q

0
dt exp(t2) = √

πq exp(−q)erfi(
√

q). (70)

We recall that

erfi(v) = erf(iv)

i
= 2

i
√

π

∫ iv

0
dt exp(−t2) = 2√

π

∫ v

0
dt exp(t2).

(We use the denotation erf(v) for the normalized error function, erf(∞) = 1.) If θ0 is not equal
to zero, integral (68) cannot be reduced analytically to a simple expression. Quite generally,
however,

B(0, sin θ0) = 0, lim
q→∞ B(q, sin θ0) = 1. (71)

To verify that B(q, sin θ0) tends to unity if q → ∞, let us take sin θ0 > 0, sin θ > 0 and utilize
the asymptotic expression I0(v) ≈ exp(v)/

√
2πv [6]. So we obtain the integral

B(q, θ0) ≈ cos θ0

√
q

π

∫ π/2

0
dθ

√
sin θ

sin θ0
exp[−q(sin θ − sin θ0)

2].

However,

lim
q→∞

√
q

π
exp[−q(sin θ − sin θ0)

2] = δ(sin θ − sin θ0) = 1

cos θ0
δ(θ − θ0)

and this proves the asymptotic property B(∞, θ0) = 1 for all values of θ0 ∈ (0, π/2).
In figure 1, we have plotted seven functions B(q, θ0) distinguished by the parameter

sin θ0 for which we have chosen the values sin θ0 = n/8 (n = 0 and n = 2, 3, . . . , 8).
For q ≈ 2, the uppermost (full) line corresponds to the function B(q, 0) ≡ B⊥(q) (the
perpendicular incidence, θ0 = 0). The next full line shows the function B(q, arcsin(1/4));
afterwards, the uppermost dotted line shows the function B(q, arcsin(3/8)), etc. (The curve

11
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Figure 1. The function B(q, θ0) for chosen values of θ0. All the curves cross each other. For q
approaching zero, the identification of the curves from above downwards is as follows: (i) the full
lines correspond to the values of sin θ0 equal to 0, 1/4, 1/2 and 3/4; (ii) the lines suggested by
points correspond to the values of sin θ0 equal to 3/8, 5/8 and 7/8.
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Figure 2. The function B(q, θ0) for the values of q equal to the integers labelling the plotted
curves.

for B(q, arcsin(1/8)) has not been plotted since it would practically coincide with the curve for
B⊥(q). The scale of figure 1 has not allowed us to show that the curve for B(q, arcsin(7/8))

does also reach a maximum, as all other curves in figure 1 do.)
In figure 2, we have plotted seven functions B(q, θ0), distinguished by chosen values of

q. Figure 2 manifests that the dependence of B(q, θ0) on the angle of incidence θ0 is sensitive
to the value of the parameter q.

Let us now highlight our main result. It is the explicit formula for the total tunnelling
probability which reads:

T (u,w, θ0) = T 0(u,w, θ0) +
∞∑

n=1

Tn(u,w, θ0)

= T̄ exp(u2)

[
1 +

∞∑
n=1

u2n

n!
B

(
w2

2n
, θ0

)]
. (72)

Bearing this formula in mind, we can discuss how diffusive the tunnelling under consideration
actually is. What we can say a priori is that the tunnelling is certainly not diffusive if � → ∞
12
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Figure 3. The function p(u,w, θ0) with the constant parameters u and θ0. (The curves have been
calculated with θ0 = 0 and with u equal to 0.5, 1.0 and 1.5.)

angle of incidence = 45 degrees

p

w
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Figure 4. The function p(u,w, θ0) with the constant parameters u and θ0. (The curves have been
calculated with θ0 = π/4 and with u equal to 0.5, 1.0 and 1.5.)

(i.e. if w → ∞). Therefore, we deem it reasonable to focus attention on the ratio

p(u,w, θ0) = T (u,w, θ0)

T ∞(u, θ0)
= exp(−u2)

[
1 +

∞∑
n=1

u2n

n!
B

(
w2

2n
, θ0

)]
. (73)

In general, this positive function is partly greater and partly smaller than unity, as is shown in
figures 3 and 4.

These illustrations show that if the values of u and θ0 are kept constant, the quantity
p(u,w, θ0) is not a monotonous function of the variable w. There exists a critical value
wc(u, θ0) (and correspondingly a critical value �c of the correlation length) given by equation

p(u,wc, θ0) = 1. (74)

Generally, we can state that

T (u,w, θ0) < T ∞(u, θ0) if 0 < w < wc(u, θ0),

T (u,w, θ0) > T ∞(u, θ0) if wc(u, θ0) < w.
(75)

Let wmax(u, θ0) be the value of w corresponding to the maximum value of p(u,w, θ0).
(Figures 3 and 4 suggest the existence of just one maximum for each depicted curve. All
the curves approach unity from above if w → ∞. The maximum point of the curve for

13
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p(1.5, w, π/4) lies at wmax(1.5, π/4) ≈ 9.21.) When comparing figure 3 with figure 4, one
can conclude that wmax(u, θ0) is an increasing function of the angle of incidence θ0. (Of
course, wc(u, θ0) is also an increasing function of θ0.)

5.2. Dependence of the scattering matrix on the directional angles θ and φ

For the forward scattering, the function S(φ, θ |φ0, θ0) involves, according to formula (60),
the sharp component S0(φ, θ |φ0, θ0) (proportional to δ(φ − φ0)δ(θ − θ0)) and the diffusive
component

Sdif(φ, θ |φ0, θ0) =
∞∑

n=1

Sn(φ, θ |φ0, θ0). (76)

The finiteness of the correlation length � implies that Sdif(φ, θ |φ0, θ0), taken generally as a
function of the angle of longitude φ and of the azimuthal angle θ , reveals a blurred distribution
concentrated around the direction given by the angles φ0 and θ0. We will now discuss the
significance of this angular blurring. Without loss of generality, we choose φ0 = 0. We focus
attention on the function

P(u,w, φ, θ |θ0) = Sdif(φ, θ |0, θ0)

Sdif(φ, θ0|0, θ0)
= Sdif(φ, θ |0, θ0)

Sdif(φ, 0|0, 0)

=
∞∑

n=1

u2n

nn!
exp

(
−w2

2n
(sin2 θ0 − 2 sin θ0 sin θ cos φ + sin2 θ)

)/ ∞∑
n=1

u2n

nn!
,

0 � θ < π/2, −π < φ < π.

(77)

To illustrate this function graphically, we choose u = 1 and two typical values of the angle
of incidence, θ0 = 0 and θ0 = π/4 (as in figures 3 and 4). If θ0 = 0, the function P is
independent of the angle of longitude φ. Indeed,

P(u,w, φ, θ |0) ≡ P⊥(u,w, θ) =
∞∑

n=1

u2n

nn!
exp

(
−w2

2n
sin2 θ

)/ ∞∑
n=1

u2n

nn!
. (78)

(Owing to the denominator
∑∞

n=1 u2n/(nn!) in (77) and (78), the functions P and P⊥ are
dimensionless and normalized. Note that

∑∞
n=1 ζ n/(nn!) = Ei(ζ ) − ln ζ − γ, where

Eiζ = −v.p.
∫ ∞
−ζ

dt exp(−t)/t is the exponential integral and γ is Euler’s constant: γ =
0.577 215 6649 . . . [6].)

The function P⊥(u,w, θ) is plotted in figure 5 for u = 1 and w = 1, . . . , 5. The
interpretation of figure 5 is simple: as the correlation length � (and then the parameter w)
grows, the blurring of the tunnelled beam gradually ceases to occur since if w → ∞, the
‘horizontal randomness’ of the barrier height V0(�ρ) ceases to be effective and there is no
reason for any lateral scattering in the tunnelling. (Moreover, if w → ∞, then generally the
function Sdif(φ, θ |φ0, θ0) decreases to zero.) In figure 6, we show the same as in figure 5 for
the oblique incidence with θ0 = π/4 and for the angle of longitude φ = φ0 = 0.

6. Concluding remarks

In our calculations, we have assumed, in order to simplify some mathematical derivations,
that the values of the parameter u should not be too high in comparison with unity. We have
excluded the case when u 
 3 from consideration. (In such a case, it would be necessary
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Figure 5. Dependence of P ≡ P⊥ on the azimuthal angle θ for θ0 = 0 when the parameters u and
w are given as constants. All the curves have been calculated with u = 1. The curves are labelled
from above downwards by w = 1, . . . , 5.

angle of incidence = 45 degrees
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Figure 6. Dependence of P on the azimuthal angle θ for φ = φ0 = 0 and θ0 = π/4 when the
parameters u and w are given as constants. All the curves have been calculated with u = 1. The
curves are labelled from above downwards by w = 1, . . . , 5.

to average much more complicated functionals of the random function V0(�ρ) than the simple
exponential used in the present paper; cf expression (18).) However, when u is of the order of
magnitude of unity, it is not a ‘small’ parameter. In this context, we are justified to accentuate
that our calculations with u < 3 have not been ‘perturbational’ at all. If one of the coordinates
x, y (say y) is chosen as a constant, the 2D plot of the barrier function V0(x, y) looks like a
crest of mountains with randomly distributed saddles. We may interpret the correlation length
� of V0(x, y) as the average width of these saddles. The particles (in our case electrons), when
impacting upon the barrier, prefer to tunnel across the barrier below the low-settled and wide
enough saddles. However, the probability to find wide saddles among low-settled ones in a
typical crest is very small. As we have shown (cf e.g. figure 3), the most efficient tunnelling
is realized through barriers defined with the values of w = k� which are neither too low nor
too high.

In figures 5 and 6, we have shown the dependence of P on the azimuthal angle θ . In the
case of the oblique incidence (figure 6, θ0 = π/4), it is also interesting to show how P depends
on the angle of longitude φ. This dependence is presented in figure 7. (The distribution
function P(u,w, φ, π/4|π/4) has been calculated according to formula (77) for u = 1 and
for the same chosen values of w as in figure 6.)
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Figure 7. Dependence of P on the angle of longitude φ for φ0 = 0 and θ = θ0 = π/4 when the
parameters u and w are given as constants. All the curves have been calculated with u = 1. The
curves are labelled from above downwards by w = 1, . . . , 5.

We hope that our theoretical results may apply to some barrier structures incorporated in
microelectronic devices. The solid-state literature is full of many examples of structures with
tunnelling barriers. We believe that wherever the barrier height V0 was hitherto approximated
as a constant, it is always possible to realize a generalization and treat V0 as a fluctuating
variable. In a theoretical description of problems with fluctuating potentials, it is particularly
advantageous to employ Feynman’s path integrals [7]. The tunnelling through fluctuating
barriers continues being interesting in its own right, although the fluctuations of the barrier
height V0 were often considered as a function stochastic in time (cf e.g. [8–10]). However, we
have had in mind a different problem since we have considered barrier fluctuations in space.
The generalization of the tunnelling theory in this sense necessitates the correct elucidation
of the angular distribution of the tunnelling probability density and of the diffusivity of the
tunnelling. This was with what we decided to deal in this article in detail.

The necessity to treat barriers with random heights was clear to investigators
who interpreted currents across Schottky barriers within the framework of a classical
thermionization theory [11–15]. In fact, electrons can traverse the Schottky barriers not
only by jumping over them (thermionization) but also by tunnelling through them. This idea,
when applied to deterministically defined Schottky barriers, was discussed by many authors.
But then, the scheme of calculations that we have described in the present paper could surely
be applicable to random Schottky barriers (although with a modification respecting the non-
rectangular shape of the Schottky barriers).

As an exemplary experimental arrangement for which our calculations could apply
directly, we can recall a metal–insulator–metal (MIM) structure [16]. In the simplest one-band
theory of such a structure, ψ(r) signifies the envelope wavefunction [17, 18] of the conduction
electron tunnelling across the insulating layer which is considered as a potential-energy barrier.
In the literature about MIM structures, V0 used to be considered as a constant. However, the
insulating layer I, but also the interfaces between I and M, may contain randomly distributed
defects which necessarily imply the randomness of the potential energy of electrons inside
the layer I, i.e. the randomness of the barrier height V0 which was the basic assumption in the
present paper. In particular, this randomness can be relevant in double-barrier configurations.
It has long been well known that if two parallel deterministically defined barriers are located in
a precise distance from one another, there are certain ‘resonant energies’ at which particles (say
electrons) can be transmitted through these barriers with the probability approaching unity.
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It is clear that this resonance behaviour can be broken if the barrier heights are stochastic.
Therefore we believe that the theory that we have presented in this paper may be useful for
quality assessments of resonant tunnel devices.

Here, however, we have also to mention another problem. In the last decade, many
authors devoted attention to the resonant tunnelling in a quite different sense: namely to
the tunnelling through localized states inside the barrier. For instance, a sandwich structure
GaAs/AlGaAs/GaAs with a thin AlGaAs-interlayer may be viewed as a rectangular tunnelling
barrier for electrons with a height V0 determined by the Fermi energy and by the values of
the forbidden gaps of GaAs and AlGaAs. If the AlGaAs-interface hosts impurity atoms or is
disordered, there may exist localized states with energies Ei < V0 in it. (These energies can
be identified as deep levels in the forbidden gap of AlGaAs.) If we realize the tunnelling at
energies coinciding with (or being close to) Ei, we may speak of the resonance tunnelling (cf
e.g. [19, 20]). (We may even consider, as recently Gryglas et al did [21], the ‘phonon-assisted
resonance tunnelling’.)

The resonant tunnelling in this sense has been a vital attribute in the explanation of
the tunnelling magnetoresistance, a phenomenon that was observed with some thin-film
tunnel junctions in which two ferromagnets were separated by a thin insulating layer (cf
e.g. [22–24]). (In this case, one speaks of spin-polarized tunnelling.) Being aware of
the importance of impurities and disorder for the tunnel magnetoresistance effects, Sheng
et al and Los have recently published theoretical papers [25, 26] which are, we believe,
complementary to ours. In [25], Sheng et al presented a theory of the impurity resonant
tunnel magnetoresistance assuming the impurity potential inside the barrier in the form
V (r) ∼ −∑

i Vi exp(−|r − ri |/λ). They have calculated the tunnelling conductance with
λ → +0 and with a constant barrier height. It would be interesting to generalize their
approach and treat, as we have done it in the present paper, also barriers with randomly
oscillating heights. We can say the same when commenting on [26]. The author of [26]
has elaborated an extensive self-consistent theory of the scattering at disordered interfaces
in layered nanostructures considering randomly distributed pointlike scatterers localized at
interfaces. Los [26] draws also attention, among other ideas, to the significance of roughness
of interfaces. If a rectangular barrier is rough, it means that its thickness a is a random
function. Thus we may conclude that it is well possible to ascribe the diffusivity of the
tunnelling—the aspect to which we have put the main attention in the present paper—not only
to the randomness of the barrier height but also to the randomness of the barrier width. This
kind of the randomness of a barrier can be accompanied, although not inevitably, with the
randomness of the distribution of impurities and/or structural defects inside the barrier.

Acknowledgments

This work has been supported by the Slovak Research and Development Agency under the
contract No. APVV-51-003505.

References

[1] Ziman J M 1979 Models of Disorder (Cambridge: Cambridge University Press)
[2] Landau L D and Lifshitz E M 1977 Quantum Mechanics 3rd edn (Oxford: Pergamon)
[3] Bezák V 2007 J. Math. Phys. 48 112108
[4] Bezák V 2007 Appl. Surf. Sci. at press
[5] Bezák V 1970 Proc. R. Soc. Lond. A 315 339
[6] Abramowitz M and Stegun I A 1964 Handbook of Mathematical Functions (Appl. Math. Series vol 55)

(Washington D.C. Natl Bureau of Standards)

17

http://dx.doi.org/10.1063/1.2806498


J. Phys. A: Math. Theor. 41 (2008) 025301 V Bezák

[7] Kleinert H 2004 Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets
3rd edn (Singapore: World Scientific)

[8] Iwanishewski J 2000 Phys. Rev. B 61 4890
[9] Ankerhold J and Pechukas P 2000 Europhys. Lett. 52 264

[10] Goychuk I and Hänggi P 2005 Adv. Phys. 54 525
[11] Tung R T 1992 Phys. Rev. B 45 13509
[12] Tung R T 2001 Mater. Sci. Eng. R 35 1
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